BJR. First published online 18 Mar 2022.
Authors, Jacob Gipson, Victor Tang, Jarrel Seah, Helen Kavnoudias, Adil Zia, Robin Lee, Biswadev Mitra and Warren Clements.
Abstract
Objectives :
Trauma chest radiographs may contain subtle and time-critical pathology. Artificial intelligence (AI) may aid in accurate reporting, timely identification and worklist prioritisation. However, few AI programs have been externally validated. This study aimed to evaluate the performance of a commercially available deep convolutional neural network – Annalise CXR V1.2 (Annalise.ai)- for detection of traumatic injuries on supine chest radiographs.
Methods:
Chest radiographs with a CT performed within 24h in the setting of trauma were retrospectively identified at a level one adult trauma centre between January 2009 and June 2019. Annalise.ai assessment of the chest radiograph was compared to the radiologist report of the chest radiograph. Contemporaneous CT report was taken as the ground truth. Agreement with CT was measured using Cohen’s κ and sensitivity/specificity for both AI and radiologists were calculated.
Results:
There were 1404 cases identified with a median age of 52 (IQR 33–69) years, 949 male. AI demonstrated superior performance compared to radiologists in identifying pneumothorax (p = 0.007) and segmental collapse (p = 0.012) on chest radiograph. Radiologists performed better than AI for clavicle fracture (p = 0.002), humerus fracture (p < 0.0015) and scapula fracture (p = 0.014). No statistical difference was found for identification of rib fractures and pneumomediastinum.
Conclusion:
The evaluated AI performed comparably to radiologists in interpreting chest radiographs. Further evaluation of this AI program has the potential to enable it to be safely incorporated in clinical processes.